
Chapter 5

GENERAL PRINCIPLES
OF USER-ORIENTED EVALUATION

Margaret King
ISSCO – School of Translation and Interpretation, ETI
University of Geneva, Switzerland
Maghi.King@gmail.com

Abstract This chapter is concerned with a particular perspective on the problem of evalu-
ation design. User-oriented evaluation takes as primary some user or set of users
who need to accomplish some task, and sets out to discover through evaluation
whether a given software system will help them to do so effectively, produc-
tively, safely, and with a sense of satisfaction. (Note that, following ISO, user
here is used in a very wide sense and encompasses much more than what has
conventionally been called end-user.) There is a clear tension between taking
specific user needs as primary and seeking common principles for the evalua-
tion of particular software applications. The chapter suggests that this tension
may be resolved by using an ISO standard for the evaluation of software as an
appropriate level of generalization (ISO 9126). Quality models reflecting the
characteristics of specific software applications (machine translation, document
retrieval, information extraction systems, etc.) are then built on the skeleton set
out in the ISO standard. Particular user needs are taken into account by pick-
ing out those parts of the appropriate quality model which reflect the needs,
where necessary imposing a relative order of importance on the parts picked out.
Execution of the evaluation then concentrates on the parts of the quality model
chosen as pertinent to the user and the context of work. The focus of the chapter
is on general design questions rather than on the strengths and weaknesses of
specific metrics. However, there is some discussion of what it means for a met-
ric to be valid and reliable, and of the difficulty of finding good metrics for those
cases where system performance and human performance in interaction with the
system are inextricably linked. A suggestion is made that it might be possible to
automate an important part of the process of evaluation design, and an attempt
to do this for the case of machine translation evaluations is briefly sketched.

Keywords User-oriented evaluation; Quality models; ISO.

125
L. Dybkjær et al. (eds.), Evaluation of Text and Speech Systems, 125–161.

c© 2007 Springer.



126 EVALUATION OF TEXT AND SPEECH SYSTEMS

1 A Historical Note
I could not claim personal authorship of any of the ideas put forward in

this chapter: they are the fruit of an effort started over 10 years ago through
the launch by the European Commission of a series of initiatives whose main
aim was to stimulate the production of linguistic resources for the European
languages. This was to be achieved by creating standards, so that resources
could be shared. The initiatives were the two EAGLES1 initiatives (1993–1996
and 1997–1999), which were followed by the ISLE2 project (1999–2002), a
joint project of the European Union and the National Science Foundation of the
United States. Swiss participation in all three initiatives was directly funded by
the Swiss Federal Office for Education and Science.

EAGLES took the form of a number of working groups, who essentially
organized their own work. Some of the working groups operated in areas which
were ripe for standardization, such as the collection of speech data or written
corpus collection: others were asked to do preliminary investigations, working
towards pre-normative guidelines in a specific area. One of these latter was
the working group on evaluation, whose remit was to find a general method-
ological framework for the evaluation of human language technology products
and systems. The first EAGLES initiative set out a general framework which
recurs throughout this chapter (EAGLES Evaluation Working Group, 1996).
The second EAGLES initiative organized a series of workshops through which
knowledge of the basic framework was disseminated and further refinement of
it took place. The EAGLES work concentrated on relatively simple language
technology products such as spelling checkers, grammar checkers, and trans-
lation memory systems as test beds for the evaluation methodology. The ISLE
project moved on to more complex systems, concentrating on the construction
of an evaluation framework for machine translation systems. This fairly sub-
stantial, but still incomplete, example of an evaluation framework can be found
at the following URL: http://www.issco.unige.ch/femti.

Work on the machine translation framework (baptized FEMTI) is being car-
ried on through a project of the Swiss National Science Foundation which
began in early 2005.

The ISLE project continued the tradition of organizing workshops where
intermediate results could be discussed and new ideas put forward. Several of
these workshops were “hands-on” workshops where the participants worked
directly on specific problems of evaluation or on constructing parts of the
framework. Some of the preparatory documents for various workshops can
be found at http:/www.issco.unige.ch/projects/isle/. Over the years, well over
100 people must have been actively involved in EAGLES or in ISLE work,
and since most of the effort was collaborative, it would be almost impossible
to say who first suggested some new idea. It is for this reason that the present



General Principles of User-Oriented Evaluation 127

author, who was chair of the evaluation working group throughout its lifetime,
claims only to be the reporter of common work and not its originator.

Another historical and intellectual debt is very important in the work
reported here. ISO/IEC published in 1991 the first of its standards concerning
the evaluation of software (ISO-9126/91). The normative part of this document
set out a quality model for the evaluation of software. It also contained pre-
normative guidelines for how the process of evaluation should be defined. The
standard was brought to the attention of the first EAGLES evaluation working
group by Kirsten Falkedal, one of its members, and subsequently became a pri-
mary inspiration for EAGLES work. The link with ISO work on evaluation was
consolidated during the second EAGLES initiative, with the technical editor
of the standard participating directly in an EAGLES workshop and contribut-
ing to the draft final report. The evaluation framework for machine translation
systems produced as part of the ISLE project is structured around the quality
model set out in the ISO 9126 standard. Recently, ISO/IEC has published two
new series of standards on software evaluation (see bibliography for full ISO
references). Defining the quality model and metrics related to it has now been
separated out from defining the process of evaluation, giving rise to a revised
9126 series (quality model and metrics) and the new 14598 series (evaluation
process and management).

Both the ISO work itself and the EAGLES work based on it were influ-
enced by work on quality assurance in the software industry: one assumption
here is that the sort of thinking underlying the assessment carried out in the
context of producing a piece of software carries over to evaluation in a wider
context. Work on evaluation of software in the context of technology acquisi-
tion around the time of the EAGLES projects also brings out the importance
of how the software will be used and in what context, thus falling into the
user-oriented philosophy. (See, e.g., Brown and Wallnau, 1996). This general
intellectual current is reflected too in the similarity between the general philos-
ophy of user-oriented evaluation and recent developments in software design,
as typified by the formulation and deployment of use cases in drawing up soft-
ware specifications in languages like the Unified Modeling Language (UML;
see, e.g., Booch et al., 1999).

Much of the rest of this chapter is intended to be directly based on the ISO
standards, although of course only the author is responsible for any misrepre-
sentation of them.

In the specific context of this chapter, I would like to thank the two anony-
mous reviewers, whose perceptive and helpful remarks have, I hope, con-
tributed to the improvement of the first draft.

Finally, I want to acknowledge a personal debt to two of my ISSCO/TIM
colleagues, Andrei Popescu-Belis and Nancy Underwood. Over the past



128 EVALUATION OF TEXT AND SPEECH SYSTEMS

several years we have spent much time in discussion of evaluation questions:
they have been generous with their time and with their insights.

2 What is User-Oriented Evaluation?
Many academic evaluation exercises concentrate on a software system taken

in isolation, looking primarily at what it is supposed to do, and ignoring the
context in which it will do it. User-oriented evaluation adopts a radically differ-
ent perspective, taking as primary a user or set of users who need to accomplish
some task and asking whether the system will help them to do so effectively,
productively, safely, and with a sense of satisfaction. This implies looking at a
large and complex set of factors which will contribute to whether, in the end,
a decision to acquire and deploy the system will seem to have been a good
decision. Frequently, the factors involved are not independent of one another,
either conceptually or in the ways that each factor may contribute to an overall
judgement. Thus, an evaluation designer working in the user-oriented perspec-
tive may often find himself/herself saying something like “well, it would be
nice to have x, but if not, y might compensate for the lack, but whatever happ-
ens with x and y we must have z”.

This implies that right from the start evaluation cannot be seen as a search
for a single magic metric that will tell all that needs to be told about the system
or systems being considered and which, when used alone, will allow direct
comparison of competing systems.

Because of this chapter’s focus on the philosophy and design of user-
oriented evaluations there is very little direct discussion of particular metrics.
Some metrics will be used as illustrations of specific points and will be briefly
described, but no metric will get the thoroughgoing discussion of its strengths
and weaknesses that a proper account focusing on the definition and choice of
metrics would deserve. In mitigation of this weakness, most metrics are really
only of direct interest to someone involved in the process of concrete evalua-
tion design for a particular application of language technology – summariza-
tion, information retrieval, term extraction, or any other of the by now very
many applications available. Such a person needs a detailed analysis and criti-
cal discussion of the specialized metrics applicable in his/her area of interest,
and such a discussion can best and most easily be found in the technical liter-
ature, where interest in evaluation and in suitable metrics has been constantly
expanding in the past few years.

Making a conscious decision not to treat specific metrics in any detail should
not be interpreted as dismissing the importance of metrics: indeed, it will
be argued later that it is the choice of metrics which determines the opera-
tional content of any specific evaluation, and a sister paper to this one (King,
2005) has much to say about that. But what concerns us here is all that has



General Principles of User-Oriented Evaluation 129

to happen before the evaluation designer can even begin to think about what
metrics he/she will choose. This preliminary – very great – labour will be set
out in the form of a number of principles underlying evaluation design in the
user-oriented perspective.

3 A First Principle: Quality is Decided by Users
In the vast majority of cases, it is impossible to say in absolute terms whether

something of its kind is or is not good. This is true of objects, processes, study
programmes – of almost anything we can think of. In the case of software this
otherwise rather sweeping statement can be justified fairly easily. Software is
not created for its aesthetic value: it is meant to help in achieving some task,
and its value is to be judged precisely in terms of whether it does so. There is
thus always a user of the software, someone or some process who needs to get
something done, and who makes use of the software as a means to that end.

Users can come in all shapes and sizes: they are not necessarily what are
conventionally thought of as “end-users”. Drawing up an exhaustive list of
people who might be users in some given situation is not a practical proposi-
tion, so let me illustrate this with a few examples. Quite obviously, as I sit
typing this into a text processor, I am a user, both of the text processing system
itself and of the whole platform in which it is embedded, and, in this case,
I am also an end-user. But imagine now the university computer committee
who decides what hardware to buy and what software to put on it. They too are
users in the sense of this section. They use the computer facilities they have
decided to purchase by putting them at the disposal of a community of end-
users, and, just as I may be more or less satisfied with what I am using, they
may be more or less satisfied with the provision they have made.

Other users may not be using a commercial product at all. If a research
worker is developing a research prototype, he/she is a user of that prototype
and of the modules that go to make it up: as such, he/she will be more or less
satisfied with the prototype or its modules. It could even be plausibly argued
that if one of the modules of his/her research prototype makes use of input
provided by another module or interacts with it in some other way, the module
of the prototype is itself a user. It cannot of course feel satisfaction, but an
analogue to satisfaction can be formulated in terms of whether it gets the right
input or the appropriate interaction.

An early ISO discussion illustrated the variety of potential users rather
graphically by listing the users of an aeroplane, who include the cockpit crew
who fly it, the passengers who travel in it, the cabin crew who look after the
passengers, the company to which the aeroplane belongs, and even the control
tower staff who give instructions for landing and take off. All of these have
very different requirements which the aeroplane should fulfil.



130 EVALUATION OF TEXT AND SPEECH SYSTEMS

Those who find this ISO-influenced extension of the sense of “user” rather
counter-intuitive might feel more comfortable with a word like “stakeholder”,
as one of the reviewers suggests: indeed, the FEMTI evaluation framework
described later quite consciously uses “stakeholder” in order to avoid some
possible confusions between stakeholders in a general sense and users, who
are seen as a subset of stakeholders. Whatever the word, the essential point
is that the entities whose needs are to be satisfied or whose concerns have to
be taken into consideration when designing an evaluation may be many and
various: the evaluation designer should be very clear about whose needs and
concerns are reflected in the evaluation design.

A user or stakeholder then is someone or something that has a set of needs:
quality is to be judged in terms of whether or not those needs are satisfied.
The goal of evaluation is to gather the data which will be analysed in order
to provide a sound basis for that judgement. It follows from this that the first
task of an evaluator is to find out what the needs of the particular user or users
implied in the particular evaluation are. The second task is to formulate criteria
reflecting those needs. On that foundation, the evaluator can decide what met-
rics, when applied correctly, will measure system performance with respect to
the chosen criteria and work out the most reliable way of applying the metrics.
The results of their application, when analysed and presented informatively
and perspicaciously, will allow final judgement to be made.

4 A Second Principle: Users do not Have
the Same Needs

4.1 Different Tasks, Different Needs
It is self-evident that a user may need different pieces of software in order to

fulfil different tasks: a spelling checker cannot be expected to solve polynomial
equations, or a search engine to play music. But it is slightly less obvious
that different users may have different requirements even of the same piece of
software. Machine translation systems can be used to illustrate this idea.

Let us imagine that I am thinking of hosting a future Olympic Games, and
want to find out from the press what Greeks felt about Greece having hosted
the games in 2004. Essentially, I need to comb the Greek newspapers looking
for articles which report on popular reaction. I do not speak Greek, but I do
have a limited budget to help in my search. I probably do not want to spend
all my budget on hiring Greek speakers to check as many papers as they can
before the money runs out; I would be much better off finding some cheap way
to identify those articles particularly relevant to my search and using my bud-
get to have their contents summarized. In this situation, a machine translation
system may help: it can be used to produce a rough translation from which
pertinent articles can be identified. The translation produced by the software



General Principles of User-Oriented Evaluation 131

has to be only good enough to allow identification of interesting articles. In
other words, the most important needs here are for speed (there are a lot of
newspapers) and economy (the budget is not enormous) rather than for high-
quality translation; in fact, measuring translation quality in this case can be
reduced to discovering whether or not the machine translation output does in-
deed permit a satisfactorily large percentage of relevant articles to be identified
as such.

Contrast this with the situation where my proposal has been accepted and
I must now host the games. Athletes from all over the world will come to com-
pete, and they will all need to be provided with information in a language they
can understand, ideally their own. It may be quite difficult to find human trans-
lators with the necessary language combinations to produce this information,
so I may once again have recourse to machine translation. But in this context,
the needs have changed dramatically. The translation must be good enough to
avoid problems of misunderstanding or the risk of giving offence, speed is less
important given that there have been several years in which to plan the organi-
zation, and even, in all likelihood, economy is less important since the amount
of work to be done is decided by the languages in which information will be
provided, not by how many newspaper articles can be treated before the budget
runs out.3

This is of course rather an extreme example, but the same reasoning can be
applied to much more modest situations and much less complex software.4

Translation students when working on a translation tend to get very indig-
nant about spelling checkers which do not pick up as unidentified words slang
and borrowings from other languages. When they are writing letters to their
friends, a spelling checker that did pick up those same barbarisms would prob-
ably prove very exasperating.

On top of all this, even when the task remains unchanged, different users
may have different needs simply because they are different users, with different
backgrounds, different expertise, and different expectations.

In summary, the set of needs pertinent to an evaluation is decided by a
combination of the users concerned and of the task or tasks they want to
accomplish.

4.2 Different Evaluation Purposes,
Different Needs

Furthermore, evaluations themselves are meant to respond to a set of needs,
and those needs encompass more than just finding out whether a piece of soft-
ware does or does not do a specified set of tasks. In early EAGLES work,
we distinguished different purposes behind carrying out an evaluation, each of
which imposes its own requirements on the evaluation design.



132 EVALUATION OF TEXT AND SPEECH SYSTEMS

First, there is the kind of evaluation familiar to any programmer or system
designer: the main focus of the evaluation is on discovering why the software
behaves as it does and, in particular, what causes things do go wrong. We
call this diagnostic evaluation. An example in practice comes from rule-based
parsing systems. In the early 1990s a lot of effort went into the creation of
test suites, sets of artificially created inputs to a parsing system where the
aim was for each input to test the system’s behaviour with respect to a sin-
gle well-defined linguistic phenomenon (King and Falkedal, 1990; Lehmann
et al., 1996). Thus, by looking at the output from running the test suite, the
system designer could see, for example, whether simple noun groups were
being properly treated, or whether sentences containing passives were causing
problems. In the particular case of parsing systems, knowledge of what inputs
were not properly dealt with could point directly to what linguistic rules were
not functioning properly.

Test data can take many forms, and some of those forms also serve as the
basis of one kind (there are others) of comparative evaluation. In this scenario,
a collection of data which has been agreed upon as appropriate for the system
being evaluated is typically divided into two parts. One part, the training data,
is used to guide the development of the systems to be evaluated. The other
part of the data serves as test data: the same inputs are given to a number of
different systems, and their ability to treat the inputs appropriately examined.
Both inputs and expected outputs are specified as part of the test; by definition
the specified outputs are the “right” answers given the specified inputs: they
constitute a “gold standard” against which any particular set of input/output
pairs produced in practice may be assessed. When we discuss metrics, we shall
return to the use of gold standards of this kind in evaluation.

This is the basic principle behind the vast majority of the evaluation cam-
paigns organized by DARPA/ARPA and others, where system designers and
constructors compete to produce the “best” results from a common set of data
(see the bibliography for references to the MUC, TREC, ATIS, and MT cam-
paigns, for example). The primary aim of such a campaign is usually stated to
be the advancement of core technology in a particular area, coupled with the
creation of a research and development community working in that same area.

It goes without saying that diagnostic evaluation based on test data and com-
parative evaluation based on test data are two very different things. In the case
of diagnostic evaluation, using test data to probe for where a system breaks
down is meant to help in identifying a deficiency in its working. In the case of
comparative evaluation as defined here, test data serve as a way of quantifying
to what extent a system succeeds in producing the results it has been designed
to produce – they tells us nothing of any other virtues or weaknesses. Indeed,
using test data in this way has sometimes been stigmatized as producing the
illusion that apples can be usefully compared to pears.



General Principles of User-Oriented Evaluation 133

Within the human language technology field, test suites have also been
frequently used to measure progress in the development of a system: an
increase in the number of test items successfully dealt with provides a measure
of how much the system has progressed towards the ultimate goal of being able
to deal with every item in the test suite. Another way of carrying out progress
evaluation of this kind is to collect together a corpus which is held to be rep-
resentative of the text or language the system should be able to deal with. The
fact that corpora are by definition texts which occur naturally has advantages
in terms of economy and also produces the comfortable glow that comes from
dealing with the real world instead of with an artificial academic construct. On
the down side, a corpus used for testing is only informative if it is in fact rep-
resentative of the real world which the system will be expected to deal with:
ensuring representativity raises issues that are sometimes difficult to resolve.
Furthermore, the use of a corpus as test material ties the evaluation (and its
results) to a specific “real world”: there can be no guarantee that the quality
of results obtained in the context of use reflected by the choice of corpus will
carry over to other contexts of use.

The final kind of evaluation distinguished by the early EAGLES group was
called adequacy evaluation: the term was meant to capture a situation some-
what parallel to that of a consumer contemplating a major purchase. The con-
sumer knows what is wanted in a proposed new washing machine or new car;
a specific product is examined with a view to finding out whether it offers what
the consumer wants. The parallel with software evaluation is not difficult. But
it is perhaps worth pointing out that once again, different consumers, different
users in the jargon of this chapter, may have very different views on what is
wanted. Machine translation can again serve as a concrete illustration. Imagine
a translation service contemplating the purchase of machine translation soft-
ware. It may well be that the manager of the service wants a machine trans-
lation system which will deal with the language pairs where there is trouble
recruiting good translators, whilst the translators already in the service want
a system which will relieve them of some of the burden of translating the
500-page activity report which appears once every quarter and where over half
the text remains unchanged from one edition to the next. And, of course, both
manager and translators may be quite wrong in thinking that the answer to their
problem is a machine translation system: an evaluation taking into account the
whole work context may well reveal other and more productive options.

This last possibility brings us to another point about the variability of user
needs, or rather, about the user’s perception of his/her needs. The process of
eliciting needs and making them explicit in the form of a set of user quality
requirements may well contribute to a realization that needs should be refined,
modified, or perhaps changed all together. There is nothing surprising about
this: in fact discovering that one has misjudged or misstated a set of needs



134 EVALUATION OF TEXT AND SPEECH SYSTEMS

is a fairly common occurrence of daily life. (Who has not bought the wrong
garment or ordered an ill-judged meal?) Elicitation and definition of needs is
not, except in the simplest of cases, a linear process. This in itself constitutes
a very strong argument for investing time and energy on drawing up expli-
cit requirements based on acknowledged needs before expending the energy
required to define ways of discovering whether a particular system can meet
those needs.

The types of evaluation discussed in this section are not meant to be seen as
impermeable categories. Diagnostic evaluation may be part of progress evalu-
ation, comparative evaluation may be of two successive versions of a system
and therefore also be progress evaluation, and it would be quite possible to see
all the other types of evaluation as special cases of adequacy evaluation. The
point in making the distinctions is twofold: first, to emphasize yet again that
different contexts may impose very different requirements on both the software
itself and on its evaluation; and second, to stress that defining the purpose of
the evaluation is an essential preliminary to designing it.

On a more practical and even mundane level, it is also extremely important
that all those involved in an evaluation share a common perception of its pur-
pose. A stupid and rather costly mistake from my own experience will help
to illustrate this somewhat obvious but too often neglected point. We had un-
dertaken to build a system that would translate a limited set of sentences from
German into French. This was in the days long before easy and convenient
treatment of character sets, so our proof-of-concept demonstrator, whose eval-
uation was to determine whether we would continue with the project or not,
made use of codes to replace the accented and special characters of the two
languages. The evaluation was a disaster. We believed that its purpose was to
show that we could in fact translate all the different linguistic phenomena con-
tained in the agreed set of sentences, so using codes for French and German
characters was irrelevant. The representative of the funding source thought
that what had to be shown was that we could translate from German into
French – and that we clearly could not do since we could not even deal with
the appropriate character sets. Of course, anyone who knew about computing
would simply say that our interlocutor did not understand the very minor im-
portance of the character codes – but we still lost the contract. And, of course,
this point carries through on a much larger scale once general management
questions are an issue. To go back to our fictitious translation service, if the
manager thinks the evaluation is being carried out in order to find out whether
the service can offer new language pairs, but the translators think that the eval-
uation is aimed at finding out whether they can be replaced by a computer
system, the potential for disaster is inescapable.



General Principles of User-Oriented Evaluation 135

5 A Third Principle: Quality can be
Characterized

5.1 Quality Models
Everything so far has been rather distressingly bottom-up. We have insisted

on the idea that whilst quality can only be defined in terms of users, users
have very different quality requirements, and we have aggravated the potential
problems posed by that claim by adding that different kinds of evaluations
designed with different aims in mind also affect the quality requirements which
form the backbone of the evaluation design. The obvious conclusion is that
every evaluation is necessarily a one-off exercise, carried out for a particular
client in view of a particular set of user needs. If this were true, evaluation
would also be a very costly exercise, since little if anything could be shared
across evaluations.

The ISO 9126 standard constitutes a direct antidote to the slough of despond
created by the idea of having to start afresh each time. The basic idea is that
if we operate at a sufficiently high level of generality, there is a small set of
characteristics of software which are likely to be pertinent to a judgement of
quality in almost every case: listing these characteristics, breaking them down
into sub-characteristics, and providing definitions of each item will provide the
designer of an evaluation a way into examining the needs of particular (sets of)
users and expressing their quality requirements in terms of the characteristics
which make up part of the general quality model.

There is not enough space here to go into all the detail of the 9126 standard,
but it is probably useful to give a brief summary, and some example definitions
which are taken from ISO/IEC 9126 series, part 1, published in 2001.5 The
reader is urged to consult the standards directly for more detail and for further
discussion.

ISO 9126 proposes six main quality characteristics of software. The first
of these is functionality. Functionality is essentially concerned with what
the software does, rather than how it does it. It is broken down into five
sub-characteristics. The sub-characteristics of functionality are suitability,
accuracy, interoperability, security, and compliance. We shall leave inter-
operability and security as intuitive notions, which will, of course, have to be
fleshed out with concrete and detailed definitions in the context of any particu-
lar evaluation.

The distinction between suitability and accuracy, however, needs a little
more commentary. Suitability is defined as “the capability of the software to
provide an appropriate set of functions for specified tasks and user objectives”,
and accuracy as “the capability of the software product to provide the right
or agreed results or effects”: in other words, accuracy is based on whether
the software conforms to its specifications. It is almost redundant to say that



136 EVALUATION OF TEXT AND SPEECH SYSTEMS

what results should be produced is a key component of the specifications. If
the software does indeed produce the results its specifications say it should, by
this definition the software scores well on accuracy. But high accuracy does not
necessarily mean that the results produced are in fact useful to a particular user
with a specific task to accomplish. In the worst case, the software designer has
simply got wrong what might be helpful – market failures provide empirical
verification of the existence of this possibility.

A concrete example may help in grasping the distinction. A major need in
the translation world is for terminology extraction tools. Modern technology
moves at such a rate that vast amounts of new terminology appear all the time,
and even specialized technical translators cannot be expected to keep up with
the development of terminology in their fields. At the same time, it is rare that
a new term appears only once in a single document; most frequently, once the
term has been coined it will be used almost simultaneously in a number of
documents and may even find its way into a term bank before our hypotheti-
cal translator comes across it as a new term. A software tool which extracted
from a text all the terms it contains would give the translator a head start in
preparing the translation. The list of extracted terms could be compared to the
contents of the term banks to which the translator has access, thereby isolat-
ing remaining problem cases. If the software could go one step further and not
only isolate the new term but also identify its probable translation in any texts
that had already been translated, the usefulness of the tool would be increased
even further. There are softwares on the market which claim to be of assis-
tance in identifying potential terms. The most simple of these operate on the
assumption that a term is a string of words that will appear more than once in
a document. They therefore list all the sequences of words which appear more
than once in the text. (Most frequently, the user may decide the length of the
sequence of words – for example, two words or more – and on a lower bound
for how many times the sequence must appear in the text, e.g., twice or more.)
Given these specifications for how to identify candidate terms, any piece of
software that produces from a text a list of all and only those word sequences
matching the parameters is accurate in the sense described here – it conforms
to its specifications. But it takes very little reflection to see that the results will
be pretty well useless to any translator or terminologist. Sequences such as
“all the”, “any piece”, or “given that” will appear far too frequently, and the
time taken to sift any potential real terminology from all the dross of useless
suggestions will be so great that no user will contemplate the investment. To
make matters worse, since no morphological analysis is carried out, “Inter-
net technology” and “Internet technologies” may not be picked up as possible
variants on a single term. And worse again, unless one or other of them occurs
more than once, with the example parameters given, neither will be picked
up at all. To couch this in the jargon of the well-known precision and recall



General Principles of User-Oriented Evaluation 137

metrics, there is both far too much noise and at least a strong risk of silence.
In other words, the results, whilst totally accurate, are not suitable.6 In user-
oriented evaluation, suitability is likely to count for rather a lot more than con-
formity to specifications.

There are cases nonetheless where a failure to distinguish between accuracy
and suitability may not be very important, simply because the nature of the
software in question is such that the two do more or less coincide. A case in
point is dictation software. Accuracy, in this case, is defined in terms of being
able to transcribe correctly the words spoken by the user. For users who want
to be able to dictate their text, it is a reasonable assumption that the fewer
mistakes in transcription the software makes, the more suitable will they find
the results. (A user may have other reasons of course to dislike the software,
but in terms of this aspect of its functionality, all should be well.)

At the other extreme, software products are becoming available where the
link between accuracy and suitability is far more problematic. A first example
comes from search engines. Most of us have experienced the awful moment
of being presented with a million or more results in response to a query. The
search engine is perfectly accurate, however, according to its own specifica-
tions. The results are just not suitable once our information needs are taken
into account. And, of course, the search engine cannot be blamed: the software
has not functioned badly; we have failed to formulate our query in a satisfac-
tory way. Less familiar examples are data-and text-mining softwares. They too
deal with a very large mass of data, trying to find connections and associations
that could not be found by any human. Such tools may well come up with to-
tally accurate but completely uninteresting and therefore unsuitable insights,
like an association between pregnant women and having children.

The problem is complicated by two further factors. The first is the quality
of the data: if the data are poor, the software cannot be blamed for coming up
with conclusions which are not very useful. The second is the competence and
flair of the users. Typically, with these kinds of software, there is interaction
between an expert user and the software in searching for a useful result: on the
basis of a preliminary set of results the user will refine his search for informa-
tion or instruct the software to ignore certain characteristics of the data. Some
users are better at this than others. Once again, a piece of software cannot be
blamed if a particular user cannot formulate and direct an information request
appropriately. One of the current challenges in evaluation theory is to come
up with a sound methodology for user-oriented evaluation of softwares where
problems of this kind are inherent in the nature of the software (see King and
Underwood, 2004 for more discussion).

A lot of time has been spent on only two sub-characteristics of functionality.
Fortunately, the remaining quality characteristics and their sub-characteristics
are intuitively more accessible, especially in these days of PCs and portable



138 EVALUATION OF TEXT AND SPEECH SYSTEMS

computers when many people serve as their own computer administrator. For
this reason, Table 1 produces a summary of the six characteristics and their
sub-characteristics. The right hand column gives a brief gloss of the definitions
given in the ISO standard, leaving it to the reader to flesh out appropriate
definitions for the terms used.7

Table 1. Summary of characteristics and sub-characteristics.

Quality Sub-characteristics Comments
characteristic

1. Functionality Providing functions to meet needs

a. Suitability Provision of an appropriate set of functions
for specified tasks and user objectives

b. Accuracy Provision of the right or agreed on results
c. Interoperability Interaction with other specified systems
d. Security Protection of information and data
e. Compliance Adhesion to appropriate standards etc.

2. Reliability Maintaining performance

a. Maturity Avoid failure as a result of faults
in the software

b. Fault tolerance Maintain performance in spite of faults
c. Recoverability Re-establish performance and recover data in

case of failure

3. Usability How easily can the user understand, learn,
operate, and control the system? Is it
attractive to users?

a. Understandability Can the user understand whether the software
is suitable, how it can be used for particular
tasks, and what the conditions are for using it?

b. Learnability Can the user learn to use it?
c. Operability Can the user operate and control it?
d. Attractiveness Does the user find it attractive?
e. Compliance Adhesion to appropriate standards etc.

4. Efficiency Appropriate performance relative to
resources used

a. Time behaviour Response, processing, throughput
b. Resource Amounts and types of resources (excluding
utilization human resources, which are part of quality

in use)
c. Compliance Adhesion to appropriate standards etc.



General Principles of User-Oriented Evaluation 139

5. Maintainability Correcting, improving, or adapting
the software

a. Analysability Can faults be diagnosed?
b. Changeability Can specified modifications be implemented

(by a programmer or by the end-user or
both)?

c. Stability Avoidance of unexpected side effects
d. Testability Can modified software be validated?
e. Compliance Adhesion to appropriate standards etc.

6. Portability Transferring the software from one
environment to another

a. Adaptability Adaptation to different specified
environments

b. Installability Installation in a specified environment
c. Coexistence Coexistence with other independent software
d. Replaceability For example, is up-grading easy?
e. Compliance Adhesion to appropriate standards etc.

The glosses given here are meant only as mnemonics for the much fuller
definitions of the standard. However, even in this very abbreviated (although,
hopefully, not deformed) version it is immediately clear that the definitions are
at a very high level of generality – they are, after all, meant to apply to any kind
of software. But this means that they have to be made much more concrete in
order to design an adequate evaluation for any particular type of software. We
return to this issue in Section 5.3

Before moving on, the Usability quality characteristic deserves some
commentary, if only because talk of user-oriented evaluation is so often
misinterpreted as meaning evaluating usability. Usability, as shown in the
table, breaks down into understandability, learnability, operability, attrac-
tiveness, and, as always, compliance. The notes given in the ISO standard
on the various definitions make a number of interesting points. First, they
make it clear that quality characteristics are interdependent. For example,
some aspects of functionality, reliability, and efficiency will clearly affect
usability, but are deliberately excluded from mention under usability in the
interests of keeping the quality model tidy and well structured. Similarly, as-
pects of suitability (from functionality), changeability (from maintainability),
adaptability (from portability), and installability (from portability), may affect
the sub-characteristic operability found under usability. Trying to capture the
intricate potential relationships between sub-characteristics would be very
difficult, and especially so since often they are only potential rather than



140 EVALUATION OF TEXT AND SPEECH SYSTEMS

necessarily actual: when a specific evaluation is being designed, a poten-
tial relationship between two sub-characteristics may turn out not to exist in
the particular context. Avoiding unnecessary complications in the interests of
mental hygiene may impose a certain artificiality in the definition of a quality
model.

This brings us to a central and critical point, which has already been hinted
at: the real meaning of any quality characteristic or of its sub-characteristics
is operational, and is given by the metrics used to measure system perfor-
mance with respect to that characteristic. Furthermore, it is the decomposition
of the top level characteristics and sub-characteristics in order to arrive at
measurable attributes which allows the general quality model to be specialized
for specific software applications. This will become clearer when we discuss
the formal structure of a quality model in Section 5.2.

Second, the notes emphasize that usability issues affect all the different
kinds of users: “Users may include operators, and users and indirect users who
are under the influence of or dependant on the use of the software. Usability
should address all of the different user environments that the software may
affect, which may include preparation for usage and evaluation of results.”
This again emphasizes the great variety both of users and of the environments
in which they work, stressing that there may well be users other than end-users
whose needs have to be taken into account when designing an evaluation.

All of the quality characteristics making up the quality model contribute
ultimately to what the ISO standard calls quality in use. This is the quality of
a piece of software as it is perceived by an actual user, in an actual work situa-
tion trying to accomplish an actual task. ISO/IEC 9126-1/01 defines it as “the
capability of the software product to enable specified users to achieve speci-
fied goals with effectiveness, productivity, safety and satisfaction in specified
contexts of use”. Quality in use can only really be evaluated in situ, although
much effort is invested by manufacturers of commercial software into trying to
control the eventual quality in use of a product before it is released on the mar-
ket, and a central tenet of this chapter is that by careful examination of users
and of the tasks they will perform it is possible to evaluate a piece of software
in such a way as to be able to predict its potential quality in use.

Thus a basic assumption underlying both the ISO 9126 standard and the kind
of evaluation discussed in this chapter is the existence of a sort of quality chain:
good specifications will contribute directly to production of good code (inter-
nal quality), good code will contribute directly to good system performance in
terms of the quality characteristics (external quality), and good system perfor-
mance will contribute directly to good quality in use. The particular slant on
this assumption in EAGLES and ISLE work is that by looking at a combination
of user needs and system performance in terms of the quality characteristics,



General Principles of User-Oriented Evaluation 141

we can construct specialized quality models and thus, on the basis of an evalu-
ation of external quality, go a long way towards predicting quality in use for
the specific user.

5.2 Formalizing the Quality Model
The ISO quality model sketched briefly above is informal, in the sense that

anything written in a natural language is informal: it names quality characteris-
tics and sub-characteristics, and provides definitions in English for them. Both
names and definitions are therefore open to different interpretations by differ-
ent readers; this is not a fault in the standard, but a problem inherent in the use
of natural language.

A major aim of the EAGLES work was to impose a more formal structure on
the quality model with the double aim of facilitating clear thinking about qual-
ity models for particular types of software and of defining a structure which
could serve as the basis for computer implementations of evaluation schemes
based on the quality model principle.

Within EAGLES, a quality model was defined to be a hierarchical structure.
The top-level nodes in the structure are the quality characteristics themselves.
The sub-characteristics are daughter nodes of the top-level characteristics. The
ISO definition legislates for only these two levels. The EAGLES version, how-
ever, allows sub-characteristics to be broken down in their turn, with the hier-
archy descending to whatever level is needed to bottom out into attributes to
which at least one metric can be associated. In other words, the leaves of the
structure must contain attributes which are measurable.

Each node in the hierarchy is then defined to be a feature/value pair of the
sort familiar from computational linguistics. The name of the quality charac-
teristic or sub-characteristic is the name of the feature. When an evaluation is
executed, the value of the feature is obtained by propagating values upwards
from the leaves of the tree. The values on the leaves are obtained by apply-
ing the metric associated with that leaf. (For simplicity, we shall imagine that
there is only one metric associated with each level: it is a fairly simple step
to generalize to the case where more than one metric is associated). Values on
higher nodes are obtained by combining the values from the next hierarchical
level down according to a combining function which is part of specifying the
particular evaluation.8

Perhaps the most interesting feature of this formalization is that the qual-
ity model has now gained a precise semantics. Where just saying that part
of functionality is suitability does not say much and does not say it un-
ambiguously, once suitability is tied directly or indirectly through a branch
of the hierarchical structure to a metric or metrics, it acquires a clear and
unambiguous interpretation: its meaning is given by how its value is to be



142 EVALUATION OF TEXT AND SPEECH SYSTEMS

obtained from the lower nodes in the quality model. This is what was meant
by saying that the semantics of an instantiated quality model was operational,
and determined ultimately by the choice of metrics. To this we should now add
“and by how the values obtained through applying those metrics are combined
to give values for upper nodes in the structure”. The quality model can still of
course be ill-conceived, but we are now much more likely to discover that it is,
and discussion about its correctness or incorrectness is anchored in empirical
observation.

5.3 From the General to the Particular:
Specializing a Quality Model

The quality model defined by the ISO standard is situated at a very generic
level. In order to produce from it a model useful for a particular evaluation we
need to make it more concrete. This involves first specializing the model to
take into account the particular kind of software to be evaluated and secondly
making it more concrete by relating the model to the specific needs of a user.

If we look at the names and definitions of the ISO quality characteris-
tics, functionality leaps out as the characteristic needing further specification
in terms of the particular type of software to be evaluated. As the reader
will remember, its sub-characteristics are suitability, accuracy, interoperabil-
ity, security, and compliance. Of these, accuracy seems most closely to reflect
the nature of the software to be evaluated, and it is therefore perhaps no ac-
cident that the majority of evaluation campaigns concentrate on evaluation of
accuracy almost exclusively.

To start illustration with a fairly simple case, accuracy for a spelling checker
plausibly breaks down into two sub-characteristics. The first of these is being
able to identify strings of characters which do not constitute legal words of
the language in question, signalling them and only them as potential spelling
mistakes. The second is being able to propose plausible corrections. Proposing
plausible corrections in its turn breaks down into two sub-characteristics. The
first concerns whether the checker proposes the right correction; the second
concerns the position of the right correction in the list of suggestions, assum-
ing that more than one suggestion is made. With recent spelling checkers, a
third sub-characteristic of accuracy might be the ability to identify correctly
the language of a passage of text.

All of this sounds relatively straightforward, and we can rather easily imag-
ine completing the model by associating metrics to the terminal nodes. For
example, we might create a list of words, generate from that list a set of mis-
taken words, and use the list of mistakes to discover what percentage of our
mistaken words are identified as such. Then, using the original list of words to
provide us with a definition of what the right answer should be, we can dis-
cover in what percentage of cases the right word is proposed. It is a relatively



General Principles of User-Oriented Evaluation 143

Figure 1. Substructure for the fragment of the quality model.

easy matter to check what position in the list of suggestions is occupied by
the right proposal.9 Finally, we can construct a text composed of fragments of
text of a reasonable length for each of the languages which interests us, and
use that as test data to discover whether the languages are correctly identified
(for actual evaluations along these lines, see TEMAA, 1996 and Starlander and
Popescu-Belis, 2002).

This gives us the substructure for the fragment of the quality model we are
currently concerned with (Figure 1).

Unfortunately, even though superficially this looks convincingly tidy, defin-
ing accuracy for human language technology software is seldom as straight-
forward as it seems. What counts as a legal word of the language is mainly
built into the software when it is released: in the most common case the soft-
ware consults a built-in dictionary of legal words and if the string in the text
does not correspond to an entry in the list, it is signalled as a mistake. Thus,
accuracy in the ISO sense of conforming to specifications only depends on the
software being able to identify correctly words which are not in the dictionary.
But in the caricature case, the dictionary of legal words may be so impover-
ished as to be practically useless, thus rendering the software unsuitable for a
large class of users. So, even in this apparently very simple case, accuracy in
a user-oriented evaluation is considerably less important than suitability. (For-
tunately, the metrics proposed can be implemented in such a way that they
reflect user needs through an appropriate choice of words included in the test
material.)

All we are really doing here, of course, is reinforcing a point already made
at some length in Section 5.1. The main reason for labouring the point is that,



144 EVALUATION OF TEXT AND SPEECH SYSTEMS

as we noted there, academic evaluation has tended to concentrate on accuracy,
usually defined in terms of a set of inputs and related outputs. (I have even
heard it claimed that limiting evaluation in this way is the only respectable
way for an academic to work on evaluation). To adopt the limitation does,
however, assume that those responsible for the system specifications have been
successful in forcing accuracy and suitability to coincide: they have correctly
predicted what users will need. It would be an unwise evaluator who failed to
examine this assumption.

So even in specializing the functionality characteristic to take account of
the type of software to be evaluated, user needs play a major role. But the user
needs are still being expressed in terms of what the software should do, rather
than how it should do it. Most of the other quality characteristics take what the
software should do for granted, and look at questions like how fast it is, what
memory resources it needs, how easy it is to install and maintain, how easy
it is to learn and to use, and so on – all issues of obvious importance when
specializing the model to account for a particular user’s needs.

An interesting exception for human language technology is maintainabil-
ity, where a note to the ISO definitions makes it clear10 that maintainability
includes adapting a piece of software to meet end-user requirements. Many
language technology products critically include adapting the software to meet
specific needs. A spelling checker allows the user to enter items in a per-
sonal dictionary, thus avoiding new terminology, being constantly flagged as
unknown. A dictation system usually gives best results if trained to a particu-
lar voice. The results of an alignment algorithm improve if the user is allowed
to specify a list of abbreviations which should not cause segmentation to take
place. A machine translation system performs better if the user can influence
the contents of the dictionary. None of these change the basic functioning of
the software, and so are not, in that sense, part of functionality. In a way, they
are simply more radical examples along a continuum that starts with being able
to customize software by changing colours or creating personalized tool bars,
but they have a more direct influence on suitability: they offer a first example
where some might find the classification under a particular quality characteris-
tic rather arbitrary.11

Other examples where an evaluator might be unsure as to where an attri-
bute fits in the quality model can be found if we think about particular
applications. For example, one feature of machine translation systems which is
likely to be of interest to many users is the speed with which the translation is
produced. Put like that, this attribute looks as though its natural place is a sub-
characteristic of efficiency, under time behaviour. But then, if we take into con-
sideration that the time to produce a usable (for whatever purpose) translation
may have to include reading through the output and perhaps modifying it to
improve translation quality, it begins to seem that the interesting metric is not



General Principles of User-Oriented Evaluation 145

how many words an hour of raw output can be produced, but how many words
of usable output. And once that move has been made, there will be some who
think that how quickly usable output can be produced is part of suitability
rather than efficiency, or others who think that two attributes are needed rather
than one.

This latter stance is reflected by those who have used two metrics, the first
typically measuring the number of words of raw output produced in some
specific period of time, the second measuring how long it takes to produce
useable output. The first of these metrics is rather easy to define, but it might
be worth anticipating some later discussion by dwelling briefly on the diffi-
culty of defining the second. The problem is twofold: first someone has to
decide what counts as usable output; second, producing useable output (un-
der any definition) from raw machine translation output necessarily requires
human intervention, and human behaviour is affected by physical and emo-
tional condition as well as by attitude to the task in hand. (An anecdote once
popular amongst machine translation evaluators recounts that it was possible
to reverse human judgements about which translations had been produced by
a machine and which by humans simply by presenting the former beautifully
typed on A4 paper and the latter badly laid out on line printer paper.) In prac-
tice, the two problems have usually been confounded and compounded: the
most usual definition of a metric based on the time needed to produce useable
output requires human beings to edit the raw output in order to produce what
in their opinion is useable output, and measures the time they take to reach
this goal. (Discussion of this and related questions can be found in Slocum
et al., 1985). We shall come back to the difficulties posed by metrics which
inherently require human involvement in a later section.

To return to quality models at a more general level, it has already been
pointed out (Section 5.1) that mental hygiene does indeed impose a certain arti-
ficiality on the structure of quality models, but it is far more important in
these cases to insist yet again that the real meaning of any substructure of
the hierarchy is given by the metrics associated with the terminal nodes. The
names of the features are, as a philosopher once said in a slightly different
context, merely pegs on which to hang descriptions, the descriptions being the
expression of a node by the nodes depending on it and, ultimately, by the mea-
surable attributes found on the terminal nodes.

5.4 Combining Metrics in a Quality Model
It may seem that some of the quality characteristics have received very cava-

lier treatment so far, having been dismissed with a remark that they constitute
constraints on the acceptable performance of the system rather than a descrip-
tion of what the system actually does. They come into their own when we
start to consider the final way of tailoring the quality model to reflect specific



146 EVALUATION OF TEXT AND SPEECH SYSTEMS

user needs, since they carry the main burden of capturing the specific intended
context of use.

The key notion here is that of the relative importance of nodes at the same
level in the hierarchical structure. As a straightforward example, let us take the
quality of portability and its sub-characteristic replaceability, where replace-
ability covers the capability of the software to be used in place of another
software product for the same purpose in the same environment, e.g., when a
software is upgraded. Some companies producing translation memory software
produce new versions of their software at very frequent intervals. Translation
memory systems make use of an archive of previous translations, where each
sentence translated is linked to its translation. These translation archives repre-
sent an investment of considerable value: there is a direct relationship between
the richness of the memory and the productivity gains resulting from using the
memory for translation. If, then, installing a new version of the system means
that memories created with the previous versions can no longer be used, no
matter what other advantages the new version might offer, changing to the new
version loses much of its attraction.12 In other words, replaceability becomes a
critical attribute, whose value may even determine the outcome of the evalua-
tion as a whole. Of course, for someone who is thinking of buying his/her first
translation memory software and who has no resources to exploit, replaceabil-
ity is of no importance at all: what may be critical for one user may be totally
irrelevant for another.

The combining function mentioned briefly in Section 5.2 is meant to allow
expression of this notion of relative importance. For the user for whom
replaceability is critical, the evaluation designer will give it a combining value
such that it outweighs any other sub-characteristics. For the user for whom
it does not matter at all, he will give it a value equivalent to saying that it
should be neglected in the evaluation. Thus, part of tailoring the evaluation to
the needs of the specific user is defining how the values from each level of
the quality model are to be combined in order to pass them to a higher level.
By definition, the combining function is specific to a particular evaluation: it
is only the existence of such a mechanism which forms part of the definition
of the model itself under the EAGLES extension. In terms of the ISO stan-
dards, the definition of a combining function corresponds to a part of defining
the process of evaluation, as set out in the ISO/IEC 14598 series. It is part of
the step described there as specifying the evaluation, where, after metrics have
been chosen, rating levels for those metrics are established and criteria for
assessment are also established. We discuss this step in Section 5.5. We shall
come back to the discussion of metrics in more detail in Section 6.



General Principles of User-Oriented Evaluation 147

5.5 Relating Performance to User Satisfaction
A very common type of metric typically involves producing a score on some

scale, reflecting the particular system’s performance with respect to the qual-
ity characteristic in question. This score, uninterpreted, says nothing about
whether the system performs satisfactorily. To illustrate this idea, consider
the Geneva education system, where marks in examinations range from 1 to
6. How is it possible to know, other than by being told, that 6 is the best
mark and 1 the worst? In fact, most people from other systems will proba-
bly have guessed that it is so: they may then have difficulty in some other
cantons where 1 is the highest mark. (I have been told that the lack of consis-
tency in how examination marks are awarded in Switzerland is at the root of an
urban myth about Einstein’s performance in secondary school.) Establishing
rating levels for metrics involves determining the correspondence between the
un-interpreted score and the degree of satisfaction of the requirements.

Not all attributes acquire a numerical value when their metrics are applied.
For example, the attribute reflecting which language pairs a machine transla-
tion system covers has a non-numerical value, as does the attribute covering
what platform the software needs. Rating levels are also a way of ironing out
differences in type across metrics that have to be combined. Since quality refers
to given needs, there can be no general rules for when a score is satisfactory.
This must be determined for each specific evaluation.

Each measure, interpreted by its rating level, contributes to the overall
judgement of the product, but not necessarily in a uniform way. It may be,
as we have seen earlier, that one requirement is critical, whilst another is desir-
able, but not strictly necessary. In this case, if the system performs badly with
respect to the critical characteristic, it will be assessed negatively no matter
what happens to all the other characteristics. If it performs badly with respect
to the desirable but not necessary characteristic, it is its performance with res-
pect to all the other characteristics which will determine whether the system is
acceptable or not.

This consideration is familiar from discussion of the EAGLES/ISLE com-
bining function. In ISO 14598 it feeds directly into establishing criteria for
assessment, which involves defining a procedure for summarizing the results
of the evaluation of the different characteristics, using, for example, decision
tables or weighting functions of different kinds.



148 EVALUATION OF TEXT AND SPEECH SYSTEMS

6 A Fourth Principle: Quality can be Measured

6.1 Defining and Validating Metrics
By now, the reader will need very little persuading that the utility and worth

of a quality model depends critically on the metrics associated with the mea-
surable attributes forming the terminal nodes of the quality model structure.

A primary constraint on a metric is that it should be valid, i.e., it should in
fact measure what it purports to measure. This sounds blindingly obvious, but
the evaluation literature abounds in metrics which fail to meet this stipulation.
The social sciences literature is rich in discussion about validity. One distinc-
tion made there which was picked up by early EAGLES work is a distinction
between internal validity and external validity. A metric is internally valid if its
validity is guaranteed by the nature of the metric itself. It is externally valid if
the results obtained by applying the metric correlate with the feature of inter-
est without directly measuring it. An informal example of an internally valid
metric is given by the way reading ages are tested. Reading age is first ex-
tensionally defined by drawing up lists of the words a child should be able to
read at a given age. The reading age of a given child is then determined by
asking him to read aloud texts which contain the vocabulary defining a spe-
cific age. His ability to do so determines whether he has reached the reading
age defined by the vocabulary. The definition, in other words, is circular: read-
ing age is defined by being able to read a certain set of words, and is tested
for by asking that those words be read: validity is internal to the metric. An
informal example of an externally valid metric comes from the questionnaires
that life insurance companies ask potential customers to fill in. They clearly
cannot sensibly ask how long the person to be insured will live, so they ask
what his weight is, whether he smokes, if he has diabetes, if he has ever had
major surgery, and so on – all factors which correlate closely with average life
expectancy.

In human language technology evaluation, the word error rate metric used
with speech recognition systems seems to offer a clear example of a metric
which relies on internal validity. The speaker speaks a known word: if that
word is correctly transcribed, the system produces the right answer. The num-
ber of right answers out of the total test set determines the system’s score. In
evaluation jargon, there is a gold standard which determines what the right
answer should be.

Most evaluation campaigns have been based on the creation of gold stan-
dards. Their production is frequently a costly and contentious business, simply
because there are relatively few applications where the right answer is eas-
ily defined. A couple of examples will illustrate this. Fact extraction systems
take text as input and produce as output information extracted from that text,
often in the form of a template where the system’s task is to fill in slots in an



General Principles of User-Oriented Evaluation 149

appropriately chosen template. For example, from the sentence “The minister
for foreign affairs will visit Paris on January 4th”, a system might be expected
to produce a structure13 like:

(ACTION: visit
AGENT: minister for foreign affairs
LOCATION: Paris
DATE: January 4th)

The system would probably be expected to produce the same template from
the sentence “January 4th is the date set for the visit by the minister for foreign
affairs to Paris” or even from “A visit to Paris on January 4th is part of the
schedule planned for the minister for foreign affairs”. A collection of texts and
a set of filled templates based on those texts constitute the gold standard for
the evaluation of such systems.

The problem is obvious: how is it decided what templates should exist, what
slots they should have, and what the fillers for those slots should be? Further-
more, how are the limits on what the system can be expected to do decided?
If the sentence is “Utopia’s most notorious minister is expected to cause major
controversy by visiting the capital of France on the 4th of next month”, can the
system still be expected to extract the same slot fillers? Within an evaluation
campaign, a common solution is to seek consensus amongst interested parties
in these cases (Lehnart and Sundheim, 1991 discuss some of the issues raised
by consensus seeking). Creating the test data is in itself expensive: when the
cost of producing consensus is added in, test data of this kind can become a
resource of considerable monetary value. Expense also helps to explain why
test data is frequently reused.

Similar problems arise with applications like document retrieval, where
judging the relevance of a retrieved document is of major importance in evalu-
ating the system’s success. Relevance judgements can be challenged, so some
way of convincing both evaluators and those being evaluated of their accept-
ability has to be found. The TREC conferences14 have been prolific in discus-
sion of this issue and ingenious in ways of getting round it (see, e.g., Voorhees,
2000, 2003; Sparck Jones, 2001).

The root of the problem, of course, is that there is, in these cases, no answer
which is indisputably right. The gold standard is achieved not by looking for
absolute truth, but by seeking a wide enough agreement on what will count as
right. Nonetheless, once the consensus has been achieved, the gold standard
forms an intrinsic part of the metrics using it: the metrics achieve an internal
validity.

There are, however, applications where even creating a right answer by con-
sensus is problematic. One such is machine translation. It is in the nature of
translation that there can be no single correct translation of a source text: the
chances that any two human translators would come up with exactly the same



150 EVALUATION OF TEXT AND SPEECH SYSTEMS

translation for a sentence of reasonable length are very slim, but both their
translations may be equally acceptable.

For this reason, most of the metrics historically used in machine translation
evaluation have tended to rely critically on human judgement. Many ask human
subjects to give a score to a segment (usually a clause or a sentence) of machine
translation output based on a judgement of its intelligibility, fluency, accuracy,
or some similar characteristic. These metrics suffer from several weaknesses.
First, there is the problem we have already alluded to: human beings are not
robots. They are impatient when they get tired, they may love or hate machines,
they may resent having to take part in an exercise where they think they already
know the outcome, they may believe that their future employment depends on
the outcome of the evaluation exercise – the number of factors which might
influence their behaviour is so large and so various that it is almost impossible
to control for. Second, the instructions on how to apply the metrics are usually
expressed in natural language and therefore interpretable by different people
in different ways. Even if the decision is seemingly quite simple, in the style
of “score 1 if the output is intelligible, 0 if it is not” experience has shown
that intersubject reliability is far from guaranteed. A growing awareness of
such problems (discussed, e.g., in King, 1996a, b, 1997) led to attempts to
circumvent some of the problems by asking subjects to read the raw output
and then to complete a comprehension test where the questions were based on
the content of the original texts (see, e.g., White and O’Connell, 1994) . Even
these metrics, however, are not exempt from the human interference syndrome:
at the very least, comprehension tests are used in other areas in order to assess
general intelligence. By definition then, some humans will be better at working
out the correct answers than others, even when the machine translation output
is unchanged.

And of course all these metrics suffer from one great weakness: they are
expensive to implement. Setting up the tests cost money, human subjects have
to be found and perhaps paid for their participation and human analysis of the
raw results is required and must be paid for.

A number of recently proposed metrics, foreshadowed in Thompson
(1992) but in practical terms starting with the BLEU metric (Papinieni et al.,
2001), try to overcome the problems sketched above by applying quite com-
plex statistical analysis to determine how close a candidate translation is to
a set of what are called reference translations. Essentially, the metric looks at
small stretches of the machine translation output (typically three or four words)
and determines whether the stretch being examined also occurs in the reference
translation(s). The overall score for the candidate translation is based on how
many small stretches have their equivalent in the reference.15

It is clear even from this very brief and informal description that BLEU and
other measures like it which depend on comparison with a (set of) reference



General Principles of User-Oriented Evaluation 151

translations do not really resolve the problem of finding a gold standard met-
ric for translation quality, since the validity of the metric depends critically on
the quality of the reference translation(s): in terms of earlier discussion, the
validity of the metric is internal – if all (or even some of) the translations in
the reference set are poor, the scores produced by applying the metric will not
reflect what would normally be thought of as acceptable quality in the transla-
tion. For this reason, there has been much interest in checking, for particular
evaluations, whether the results correlate with human judgement of the same
machine translation outputs,16 thus bringing us back to issues of intersubject
reliability and economy.

Sidestepping the translation quality issue by using a set of reference transla-
tions is the real potential merit of these metrics, but in turn raises the practical
problem of acquiring multiple reference translations in the appropriate domain,
style, and register. This, of course, is not a new problem; it is closely akin to the
problem of acquiring suitable training corpora for any empirically based sys-
tem. But that it can be hard to solve is shown by the fact that theoretical work
on the metrics has sometimes been forced to use literary or religious texts,
and the perception is reinforced by the number of applications of the metrics
which in the end use only one, or at best a very small number of, reference
translations.

BLEU and related metrics are far from universally accepted for other rea-
sons too: sentence length may adversely affect their general validity, and rel-
atively little work has so far been done on how they function with languages
where word order is free, making it more unlikely that even a short segment of
the candidate translation text will exactly correspond to a segment of the refer-
ence translations. Thus, there is still much controversy about these metrics, as
can be seen from the proceedings of almost any recent conference on machine
translation.17

So far, the problems we have discussed come from the nature of the appli-
cation. Other problems come from the data over which a software system is
supposed to work. Document retrieval on the web offers a familiar example.
A search engine responds to a query by searching the web for documents which
match the query terms. Neither user nor evaluator can know what documents
are available: the web is both vast and shifting – what is there in the morning
may be gone by the afternoon, and new documents will certainly have app-
eared. A consequence of this is that although it is possible (at least in theory)
to check that all the documents retrieved by the search engine do in fact match
the query terms, it is not even theoretically possible to determine whether there
were other documents available at the time of the search which should have
been retrieved and were not.18 If called upon to evaluate a search engine, all
we can do is constrain the document collection, as is conventionally done in the
evaluation of document retrieval systems, and assume that by external validity



152 EVALUATION OF TEXT AND SPEECH SYSTEMS

behaviour over the constrained collection correlates with behaviour over the
unconstrained set of documents available (see TREC-2004 web track for an
example of this strategy).

Another issue raised by a document collection which is constantly chang-
ing is that of reliability: a metric should be reliable in the sense that if it is
applied in the same context on different occasions, it should produce the same
result – in experimental jargon, the results should be replicable. The problem
with searching on the web is exactly that we cannot guarantee that the context
will remain the same. Once again, we are forced to constrain the context artifi-
cially in order to ensure reliability of the metric.

Reliability is a general issue which deserves much more discussion than the
brief mention it will get here. We shall only add that pilot testing can help to
ensure that a metric has no intrinsic reliability weaknesses, and paying par-
ticular attention to reliability issues when execution of the evaluation is being
planned can help to eliminate practical problems.

6.2 Interaction between Humans and Metrics
Both validity and reliability are involved in the very delicate issue, already

referred to, of human participation in defining and applying metrics. The prob-
lem is brutally simple: human beings are neither standardized nor automata.
Behaviour varies from one human to another and even a single individual will
perform differently depending on his/her state of health, how tired he/she is,
and other inescapable natural factors. We have already discussed this prob-
lem to a certain extent, using metrics from machine translation evaluation as
examples, such as metrics based on humans completing comprehension tests
(see White and O’Connell, 1994 for discussion of these and similar issues). In
that same discussion we pointed out that evaluators have often sought to elim-
inate human participation from their metrics. But it is not always possible to
do so, essentially for two reasons. The first is that, as we have already men-
tioned, there are softwares which depend on interaction with a human; they are
simply not designed to produce satisfactory results without the intervention
of a human to guide their functioning. In these cases it is a major challenge
to devise metrics that test the performance of the software independently of
the ability of the human partner. In many cases, all that can be done is to be
aware of the problem and to choose the population of human partners very
carefully. Second, there are quality characteristics which cannot be measured
at all without making use of humans. How, for example, can attractiveness (a
sub-characteristic of usability) be measured except by asking humans for their
judgement? In these cases too, all the evaluation designer can do is to be aware
of potential problems and define a population of test subjects accordingly.

The choice and definition of metrics is a very thorny business about which
much more deserves to be said than there is space for here. The recent



General Principles of User-Oriented Evaluation 153

publications in the ISO 9126 series have much to say on the matter, and dis-
cussion of a set of formal coherence criteria for metrics can be found in Hovy
et al. (2002b).

Discussion of particular metrics can be found widely in almost any recent
conference on computational linguistics or on applications of human lan-
guage technology. Discussion of machine translation metrics in particular can
be found in the documents pertaining to the ISLE workshops, available at
http://www.issco.unige.ch/projects/isle.

7 Combining the Particular and the General:
The Ideal

Sections 3 and 4 laid emphasis on the need to take into account the qual-
ity requirements of individual users. Section 5 then tried to compensate for
a strongly bottom-up flavour by suggesting that a quality model conceived
at a sufficiently high level could be designed, and that such a model could
offer the evaluation designer a way into being systematic about defining what
a particular user might need.

This section attempts to pull these two strands of thought together, by sug-
gesting that by thinking in terms of classes of users, it should be possible
to create a fully worked-out quality model that would in some sense be the
union of the needs of all users. Designing a particular evaluation would then
become a question of picking out from the general model just those require-
ments which are relevant to the specific evaluation being designed in order to
create a tailor-made evaluation – a little like the pick n’ mix sweet counters in
the supermarket.

This is exactly the idea behind the FEMTI model for evaluation of machine
translation systems, mentioned in Section 1. FEMTI sets up two taxonomies.
The first is a classification of contexts of use in terms of the user of the
machine translation system and the translation task to be accomplished, includ-
ing characteristics of the input to the system. The second is a classification of
the quality characteristics of machine translation software, detailed into hierar-
chies of sub-characteristics and attributes, bottoming out into metrics at the ter-
minal nodes. The upper levels coincide with the ISO 9126 characteristics. The
model is completed by a mapping from the first classification to the second,
which defines (or at least suggests) the characteristics, sub-characteristics, and
attributes or metrics that are most relevant for each context of use. The nodes
of the two taxonomies frequently contain additional information in the form of
bibliographic references or explicit mention of the type of user or stakeholder
whose interests might be represented by the node.

In an ideal world, the structure described briefly above would be enti-
rely automated. An evaluation designer would click on a section of the user
needs/context of use taxonomy and would thereby bring up the relevant nodes



154 EVALUATION OF TEXT AND SPEECH SYSTEMS

from the quality characteristics taxonomy, together with a choice of relevant
metrics. All he/she would have to do to complete the evaluation design would
be to reply, when prompted, with information on the rating levels for this par-
ticular evaluation and on the combining function. Estrella et al. (2005) give a
more detailed account of FEMTI and of preliminary work on establishing links
between the two taxonomies.

At the moment, this is a utopian dream. Constructing even the current sloppy
version of FEMTI has been long and arduous, and its constructors are well
aware of lacunae and the continuing existence of inconsistencies. Perhaps
even worse, in its current state it is almost totally uncritical about the metrics
attached to the terminal nodes: the metrics have simply been collected from
the literature and very little has been done to validate them or to investigate
relationships between them – this is on the agenda for the next round of work.

There is also a strong sense, of course, in which work on defining such
generic quality models can never be finished. Technology moves at ever-
increasing speed, and systems change in consequence. Interest in the devel-
opment of new metrics and their validation has not ceased to grow over the
last few years, and with the economic stakes growing ever larger as sys-
tems become evermore complex, there is no reason to think that this interest
will wane.

Nonetheless, it is by striving towards the construction of the utopia that we
deepen our knowledge of what evaluation is all about.

8 Conclusion
The direction in evaluation work reflected in this chapter started with a

desire to share expensive resources. The obvious question as we reach the
end of the chapter is whether that has in any way been achieved by the work
reported on here. I think it cannot be denied that the EAGLES-inspired work
on user-oriented evaluation has been stimulating to the large community of
research workers and other interested parties who have participated in it: em-
pirical reinforcement of this claim comes from the fact that there is never
any lack of potential participants whenever a new workshop is announced.
The most obvious result is the growth of a common framework for thinking
about evaluation which goes further than concentrating on what the software
is supposed to do. Then too, the scientific community has become much more
sophisticated about metrics and their application over the last decade or so,
partly under the influence of a continuing interest in evaluation campaigns,
partly through discussion stimulated by work in the EAGLES, and other similar
contexts. We have not found any magic recipes for evaluating natural lan-
guage software: it would have been naive to imagine that we might. We have
made a lot of progress towards being able to justify or criticize a particular



General Principles of User-Oriented Evaluation 155

evaluation on reasoned and reasonable grounds, and we have made it easier for
the evaluation designer to set about his/her job in a systematic fashion, with
the confidence that what he/she is doing is grounded in accepted standards.

Notes
1. Expert Advisory Groups for Language Engineering Standards.
2. International Standards for Language Engineering.
3. To foreshadow later discussion, it is perhaps interesting to notice here already that the change in

needs has direct consequences on what metrics might be suitable. In particular, a measure of translation
quality based on whether or not relevant newspaper articles can be identified is, in this new context, useless.

4. The examples here are complete systems, but in a context like that of a research the same reasoning
would apply to individual modules of the overall system; what would change would be the kinds of users.

5. Quotations from ISO/IEC documents are made with ISO permission, granted in the context of the
EAGLES and ISLE projects.

6. This is of course the caricature case. Products actually on the market use a variety of devices to
cut down the noise and avoid silence. Even so, producing suitable results remains a major issue for current
terminology extraction tools, and even more so when they also try to extract a potential translation.

7. Whilst encouraging him, of course, to consult the more detailed definitions of the ISO standard itself.
8. The combining function is not as simple as it is being made to seem here.
9. This is very similar to the word error rate metric (see Section 6).
10. By pointing out that if the software is to be modified by the end-user, changeability may affect

operability.
11. A point reinforced by one of the reviewers suggesting that a clearer distinction between maintain-

ability (in the sense of it being possible for people other than those who wrote the original code to make
straightforward adjustments to it) and adaptability (in the sense of being able to extend the software to do
things that were not originally foreseen) is required. The ISO definition of maintainability includes both as
part of the same sub-characteristic, the notes on that characteristic making it clear that this is a deliberate
choice.

12. The TMX exchange format standard for translation memories was developed in order to avoid this
kind of problem.

13. This example has been invented for the purposes of exposition here: any correspondence to the
structures produced by a particular system is entirely accidental.

14. Text Retrieval Conference (TREC) TREC-9 Proceedings are available electronically at
http://www.trec.nist.gov.trec9.t9-proceedings.

15. This is a ridiculously simplified account. The reader is referred to the literature for a more accurate
and more detailed description.

16. See Lin and Och (2004) for a discussion of several automated machine translation metrics and of how
they correlate with human judgements, together with a proposal for evaluation of the metrics themselves.
A comparison of a number of metrics and their results when applied to working systems can also be found
in Surcin et al. (2005).

17. Proceedings available electronically at http://www.amtaweb.org/summit/MTSummit/papers.html.
18. To state this in terms of well-known evaluation metrics: precision, first used as metric in document

retrieval, is based on what proportion of the documents retrieved are actually relevant to the search request.
In the context described here, it is theoretically (if not always practically) possible to measure precision.
Recall, on the other hand, is based on measuring how many, out of all the relevant documents existing in
the document set being searched, are actually retrieved. Measuring recall is not even theoretically possible
in the web context: there is no possible way of knowing either what the collection of documents being
searched over is, or what the relevant documents in that collection are.



156 EVALUATION OF TEXT AND SPEECH SYSTEMS

References
AMTA (1992). MT Evaluation: Basis for Future Directions (Proceedings of a

Workshop held in San Diego, California, USA). Technical report, Associa-
tion for Machine Translation in the Americas.

Ankherst, M. (2001). Human Involvement and Interactivity of the Next Gen-
eration’s Data Mining Tools. In Proceedings of the DMKD Workshop on
Research Issues in Data Mining and Knowledge Discovery.

Blair, D. C. (2002). Some Thoughts on the Reported Results of TREC. Infor-
mation Processing and Management, 38(3):445–451.

Boisen, S. and Bates, M. (1992). A Practical Methodology for the Evalua-
tion of Spoken Language Systems. In Proceedings of the Third Conference
on Applied Natural Language Processing (ANLP), pages 162–169, Trento,
Italy.

Booch, G., Rumbaugh, J., and Jacobson, I. (1999). The Unified Modeling Lan-
guage: User Guide, Addison Wesley, Reading, USA.

Bourland, P. (2000). Experimental Components for the Evaluation of Inter-
active Information Retrieval Systems. Journal of Documentation, 56(1):
71–90.

Brown, A. and Wallnau, K. (1996). A Framework for Systematic Evaluation of
Software Technologies. IEEE Software, 13(5):39–49.

Canelli, M., Grasso, D., and King, M. (2000). Methods and Metrics for the
Evaluation of Dictation Systems: A Case Study. In Proceedings of the
Second International Conference on Language Resources and Evaluation
(LREC), pages 1325–1331, Athens, Greece.

Church, K. W. and Hovy, E. H. (1993). Good Applications for Crummy MT.
Machine Translation, 8:239–258.

Cowie, J. and Lehnert, W. (1996). Information Extraction. Communications of
the ACM, Special Edition on Natural Language Processing, pages 80–91.

Doyon, J., Taylor, K., and White, J. S. (1998). The DARPA MT Evaluation
Methodology: Past and Present. In Proceedings of the Association for Ma-
chine Translation Conference (AMTA), Philadelphia, USA.

EAGLES Evaluation Working Group (1996). EAGLES Evaluation of Natu-
ral Language Processing Systems. Final report, Center for Sprogteknologi,
Copenhagen, Denmark.

Estrella, P., Popescu-Belis, A., and Underwood, N. (2005). Finding the Sys-
tem that Suits You Best: Towards the Normalization of MT Evaluation. In
Proceedings of the 27th International Conference on Translating and the
Computer (ASLIB), London, UK.

Falkedal, K., editor (1994). Proceedings of the Evaluators’ Forum, ISSCO, Les
Rasses, Switzerland.



General Principles of User-Oriented Evaluation 157

Flickinger, D., Narbonne, J., Sag, I., and Wasow, T. (1987). Toward Evaluation
of NLP Systems. Technical report, Hewlett Packard Laboratories, Palo Alto,
USA.

Grishman, R. (1997). Information Extraction: Techniques and Challenges.
International Summer School on Information Extraction (SCIE). New York
University, New York, USA.

Hartley, A. and Popescu-Belis, A. (2004). Evaluation des systèmes de tra-
duction automatique. In Chaudiron, S., editor, Evaluation des systèmes
de traitement de l’information, Collection sciences et technologies de
l’information, pages 311–335, Hermès, Paris, France.

Hawking, D., Craswell, N., Thistlewaite, P., and Harman, D. (1999). Results
and Challenges in Web Search Evaluation. Computer Networks, 31(11-16):
1321–1330.

Hirschman, L. (1998a). Language Understanding Evaluations: Lessons
Learned from MUC and ATIS. In Proceedings of the First Interna-
tional Conference on Language Resources and Evaluation (LREC), pages
117–123, Granada, Spain.

Hirschman, L. (1998b). The Evolution of Evaluation: Lessons from the
Message Understanding Conferences. Computer Speech and Language,
12:281–305.

Hovy, E. H., King, M., and Popescu-Belis, A. (2002a). Computer-Aided
Specification of Quality Models for Machine Translation Evaluation. In Pro-
ceedings of the Third International Conference on Language Resources and
Evaluation (LREC), pages 729–753, Las Palmas, Gran Canaria, Spain.

Hovy, E. H., King, M., and Popescu-Belis, A. (2002b). Principles of Context-
Based Machine Translation Evaluation. Machine Translation, 16:1–33.

ISO/IEC 14598-1:1999. Information Technology – Software Product Evalua-
tion, Part 1: General Overview. International Organization for Standardiza-
tion and International Electrotechnical Commission, Geneva, Switzerland.

ISO/IEC 14598-2:2000. Software Engineering – Product Evaluation; Part 2:
Planning and Management. International Organization for Standardization
and International Electrotechnical Commission, Geneva, Switzerland.

ISO/IEC 14598-3:2000. Software Engineering – Product Evaluation, Part 3:
Process for Developers. International Organization for Standardization and
International Electrotechnical Commission, Geneva, Switzerland.

ISO/IEC 14598-4:1999. Software Engineering – Product Evaluation, Part 4:
Process for Acquirers. International Organization for Standardization and
International Electrotechnical Commission, Geneva, Switzerland.

ISO/IEC 14598-5:1998. Information Technology – Software Product
Evaluation, Part 5: Process for Evaluators. International Organization for
Standardization and International Electrotechnical Commission, Geneva,
Switzerland.



158 EVALUATION OF TEXT AND SPEECH SYSTEMS

ISO/IEC 14598-6:2001. Software Engineering – Product Evaluation, Part
6: Documentation of Evaluation Modules. International Organization for
Standardization and International Electrotechnical Commission, Geneva,
Switzerland.

ISO/IEC 9126-1:2001. Software Engineering – Product Quality, Part 1: Qual-
ity Model. International Organization for Standardization and International
Electrotechnical Commission, Geneva, Switzerland.

ISO/IEC 9126:1991. Information Technology – Software Product Evaluation,
Quality Characteristics and Guidelines for Their Use. International Organi-
zation for Standardization and International Electrotechnical Commission,
Geneva, Switzerland.

ISO/IEC CD 9126-30. Software Engineering – Software Product Qual-
ity Requirements and Evaluation, Part 30: Quality Metrics – Metrics
Reference Model and Guide. International Organization for Standardiza-
tion and International Electrotechnical Commission, Geneva, Switzerland.
In preparation.

ISO/IEC TR 9126-2:2003. Software Engineering – Product Quality, Part 2:
External Metrics. International Organization for Standardization and Inter-
national Electrotechnical Commission, Geneva, Switzerland.

ISO/IEC TR 9126-3:2003. Software Engineering – Product Quality, Part 3:
Internal Metrics. International Organization for Standardization and Inter-
national Electrotechnical Commission, Geneva, Switzerland.

ISO/IEC TR 9126-4:2004. Software Engineering – Product Quality, Part 4:
Quality in Use Metrics. International Organization for Standardization and
International Electrotechnical Commission, Geneva, Switzerland.

King, M. (1996a). Evaluating Natural Language Processing Systems. Special
Edition of Communications of the ACM on Natural Language Processing
Systems, 39(1):73–79.

King, M. (1996b). On the Notion of Validity and the Evaluation of MT Sys-
tems. In Somers, H., editor, Terminology, SLP and Translation: Studies in
Honour of Juan C. Sager, pages 189–205, John Benjamins, Amsterdam,
The Netherlands.

King, M. (1997). Evaluating Translation. In Hauenschild, C. and Heizmann,
S., editors, Machine Translation and Translation Theory, pages 251–263,
Mouton de Gruyter, Berlin, Germany.

King, M. (1999). Evaluation Design: The EAGLES Framework. In Nübel, R.
and Seewald-Heeg, U., editors, Evaluation of the Linguistic Performance of
Machine Translation Systems, Proceedings of Konvens’98, Bonn, Gardezi
Verlag, St. Augustin, Germany.

King, M., editor (2002). Workbook of the LREC Workshop on Machine Trans-
lation Evaluation: Human Evaluators Meet Automated Metrics, Las Palmas,
Gran Canaria, Spain.



General Principles of User-Oriented Evaluation 159

King, M. (2005). Accuracy and Suitability: New Challenges for Evaluation.
Language Resources and Evaluation, 39:45–64.

King, M. and Falkedal, K. (1990). Using Test Suites in Evaluation of MT
Systems. In Proceedings of the International Conference on Computational
Linguistics (COLING), volume 2, pages 211–216, Helsinki, Finland.

King, M. and Maegaard, B. (1998). Issues in Natural Language System Eval-
uation. In Proceedings of the First International Conference on Linguis-
tic Resources and Evaluation (LREC), volume 1, pages 225–230, Granada,
Spain.

King, M., Popescu-Belis, A., and Hovy, E. H. (2003). FEMTI: Creating and
Using a Framework for MT Evaluation. In Proceedings of MT Summit IX,
pages 224–232, New Orleans, USA.

King, M. and Underwood, N., editors (2004). Proceedings of the LREC
Workshop on User Oriented Evaluation of Knowledge Discovery Systems,
Lisbon, Portugal.

Kuralenok, I. E. and Nekrestyanov, I. S. (2002). Evaluation of Text Retrieval
Systems. Programming and Computing Software, 28(4):226–242.

Lehmann, S., Oepen, S., Regnier-Prost, S., Netter, K., Lux, V., Klein, J.,
Falkedal, K., Fouvry, F., Estival, D., Dauphin, E., Compagnion, H., Baur, J.,
Balkan, L., and Arnold, D. (1996). TSNLP – Test Suites for Natural
Language Processing. In Proceedings of the International Conference on
Computational Linguistics (COLING), pages 711–716.

Lehnart, W. and Sundheim, B. (1991). A Performance Analysis of Text-
Analysis Technologies. AI Magazine, 12(4):81–94.

Lin, C.-Y. and Och, F. J. (2004). ORANGE: A Method for Evaluating Auto-
matic Evaluation Metrics for Machine Translation. In Proceedings of the
International Conference on Computational Linguistics (COLING), pages
23–27, Geneva, Switzerland.

Minker, W. (2002). Overview on Recent Activities in Speech Understanding
and Dialogue Systems Evaluation. In Proceedings of the International Con-
ference on Spoken Language Processing (ICSLP), pages 337–340, Denver,
Colorado, USA.

Nomura, H. and Isahara, J. (1992). JEIDA Methodology and Criteria on MT
Evaluation. Technical report, Japan Electronic Industry Development Asso-
ciation (JEIDA).

Paggio, P. and Underwood, N. (1998). Validating the TEMAA Evaluation
Methodology: A Case Study on Danish Spelling Checkers. Natural Lan-
guage Engineering, 4(3):211–228.

Papinieni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2001). BLEU: A Method
for Automatic Evaluation of MT. Research report, Computer Science
RC22176 (W0109-022), IBM Research Division, T. J. Watson Research
Center.



160 EVALUATION OF TEXT AND SPEECH SYSTEMS

Slocum, J., Bennett, W. S., Whiffin, L., and Norcross, E. (1985). An Evalu-
ation of METAL: The LRC Machine Translation System. In Proceedings
of the Second Conference of the European Chapter of the Association for
Computational Linguistics (EACL), pages 62–69, Geneva, Switzerland.

Sparck Jones, K. (2001). Automatic Language and Information Processing:
Rethinking Evaluation. Natural Language Engineering, 7(1):29–46.

Sparck Jones, K. and Galliers, J. R. (1996). Evaluating Natural Language
Processing Systems: An Analysis and Review. Number 1083 in Lecture
Notes in Artificial Intelligence. Springer-Verlag, Berlin, Germany/New
York, USA.

Sparck Jones, K. and Willet, P., editors (1997). Readings in Information
Retrieval, Morgan Kaufman, San Francisco, USA.

Starlander, M. and Popescu-Belis, A. (2002). Corpus-Based Evaluation of a
French Spelling and Grammar Checker. In Proceedings of the Third Inter-
national Conference on Language Resources and Evaluation (LREC), pages
262–274, Las Palmas, Gran Canaria, Spain.

Surcin, S., Hamon, O., Hartley, A., Rajman., M., Popescu-Belis, A., Hadi,
W. M. E., Timimi, I., Dabbadie, M., and Choukri, K. (2005). Evaluation of
Machine Translation with Predictive Metrics beyond BLEU/NIST: CESTA
Evaluation Campaign #1. In Proceedings of the Machine Translation Sum-
mit X, pages 117–124, Phuket, Thailand.

TEMAA (1996). TEMAA Final Report. Technical Report LRE-62-070, Center
for Sprogteknologi, Copenhagen, Denmark.

Thompson, H. S. (1992). The Strategic Role of Evaluation in Natural Lan-
guage Processing and Speech Technology. Technical report, University of
Edinburgh, UK. Record of a workshop sponsored by DANDI, ELSNET and
HCRC.

VanSlype, G. (1979). Critical Study of Methods for Evaluating the Quality
of MT. Technical Report BR 19142, European Commission, Directorate
for General Scientific and Technical Information Management (DG XIII).
http://www.issco.unige.ch/projects/isle.

Voorhees, E. (2000). Variations in Relevance Judgements and the Measure-
ment of Retrieval Effectiveness. Information Processing and Management,
36:697–716.

Voorhees, E. (2003). Evaluating the Evaluation: A Case Study Using the TREC
2002 Question Answering Track. In Proceedings of the HLT-NAACL, pages
181–188, Edmonton, Canada.

White, J. S. and O’Connell, T. A. (1994). The DARPA MT Evaluation Method-
ologies: Evolution, Lessons and Future Approaches. In Proceedings of the
First Conference of the Association for Machine Translation in the Americas
(AMTA), Columbia, Maryland, USA.



General Principles of User-Oriented Evaluation 161

Yeh, A. S., Hirschman, L., and Morgan, A. A. (2003). Evaluation of Text Data
Mining for Data Base Curation: Lessons Learned from the KDD Challenge
Cup. Bioinformatics, 19(suppl. 1):i331–i339.

A note on the bibliography: Evaluation campaigns and projects can span
many years and give birth to numerous publications. Here, only one refer-
ence is given to any single long-term effort, even though other publications
may contain discussion which has been picked up here. The reference cho-
sen is usually either the most recent or a retrospective summary. A much
more detailed bibliography can be obtained directly from the author or from
http://www.issco.unige.ch/.




